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Genetic diversity of soil microorganisms assessed by analysis

of hsp70 (dnaK) sequences
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The genetic diversity of a soil microbial community was assessed by analysis of cloned hsp70 sequences. A clone
library was generated by polymerase chain reaction-mediated amplification of a 650-base pair fragment of the hsp70
gene, using DNA extracted from soil, without culturing the microorganisms. Fifty-five random clones were
sequenced and their amino acid sequences deduced. Analysis of the amino acid sequence of the clones revealed
the presence of signature sequences in common with known prokaryotic and lower eukaryotic HSP70 homologs.
None of the 55 analyzed sequences were identical to each other or to a published sequence. These results confirm
the presence of considerable genetic diversity within soil microbial communities, the major proportion of which

remains uncharacterized.
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Introduction

The evaluation of diversity in naturally-occurring microbial
communities has been limited by the non-culturable nature
of a large percentage of the microbial biota [18]. However,
the recent development of techniques to isolate DNA from
the environment [10,17,19], together with the application
of polymerase chain reaction (PCR) to amplify 16S rRNA
genes from environmental DNA has provided methods to
obtain information about the diversity of microbial com-
munities [1,7,14,16]. The results of these studies carried out
on terrestrial [1,14,16] as well as on a marine environment
[71, confirm the view that culturable microbial species con-
stitute a small proportion of the entire microbial population
in an ecosystem.

Apart from the use of the ribosomal rRNA genes as tools
for molecular ecological studies, other functional genes
such as the nitrogenase gene and the hydrogenase gene
have been used to evaluate genetic diversity in an environ-
ment [20,21,22]. Members of the 70-kDa heat shock family
of proteins (HSP70) are ubiquitous in both eukaryotic and
prokaryotic organisms and are one of the most conserved
classes of proteins found in all species [2,8]. Because of
their large size, ubiquity and high degree of sequence con-
servation, HSP70 homologs have been useful for studying
evolutionary relationships [2,4,8]. In this report, we evalu-
ate the genetic diversity of a soil environment by analyzing
hsp70 sequences derived by PCR amplification.
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Materials and methods

DNA extraction

A soil sample was collected from a site at the Botanical
Gardens of the University of British Columbia, Canada.
Total DNA was extracted from the soil sample by a direct
lysis procedure described by Barns er al [1]. The high mol-
ecular weight (>20 kb) extracted DNA was subsequently
purified by chromatography on Sephadex G200 columns
(Pharmacia, Uppsala, Sweden) [19].

Polymerase chain reaction amplification of hsp70
genes

Degenerate oligonucleotide primers for two conserved
regions of the HSP70 family of proteins (amino acid
sequence: '2QATKDAG!® and *NPDEAVA37?) [6] were
synthesized using a Beckman Oligo 1000 DNA synthesizer
(Beckman Instruments, Fullerton, CA, USA). The
sequences of the amplification primers were
5" CAR GCI ACI AAR GAY GCI GG 3" and 5 GCIAC
IGC YTC RTC IGG RTT 3’ (where I represents inosine, R
represents A or G, Y represents T or C) [6]. PCR amplifi-
cation was performed in a total volume of 100 ul contain-
ing 10-50 ng of template DNA, 20 mM Tris-HC1 (pH 8.4),
50mM KCl, 2mM MgCl,, 200 uM of each deoxy-
ribonucleotide triphosphate, 25 pmol of each primer and 5.0
units of Taq polymerase (BRL Life Technologies, Gaithers-
burg, MD, USA). The thermal cycling conditions were as
follows: denaturation at 93°C for 1.0 min, annealing at
58°C for 30 s and extension at 72°C for 1.0 min, repeated
for a total of 30 cycles. PCR products were electrophoresed
in 1% agarose gels and stained with ethidium bromide
using standard techniques. The expected size of the PCR
product was 650 base pairs. No amplification was observed
for negative controls (water used instead of template DNA).
The band containing the PCR product was excised from
the gel and purified using a Qiaex gel extraction kit (Diagen
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Figure 1 Detailed dendrogram for HSP70 clones. The distance matrix based on partial amino acid sequences is presented in Table 1.

Gmbh, Hilden, Germany). The purified DNA was ligated
to pPCR™II (Invitrogen, San Diego, CA, USA) to generate
a hsp70 library using E. coli INVaF’ competent cells
(Invitrogen).

Sequencing and phylogenetic analysis

Fifty-five cloned hsp70 sequences (referred to as HSP70
clones HI to H55) were chosen at random from the library
and sequences in both directions using the Tag Dye Primer
Cycle Sequencing kit and the Applied Biosystem DNA
sequencer model 373 (Applied Biosystem, Foster City, CA,
USA). The sequencing primers used included the universal
M13 (-20) forward primer, the M13 reverse primer and
primers designed from the sequence data obtained; DNA
sequences were franslated into partial amino acid
sequences. Partial amino acid sequences of known HSP70
homologs were obtained from Genbank (GB), Swiss-Prot
(SP) and PIR (PI) databases. Multiple alignment of partial
amino acid sequences and related DNA sequences was car-
ried out in a pairwise manner using a software program
package from Geneworks (Intelligenetics Inc, CA, USA),
with further manual adjustments. Steps were taken to
ensure that the highly conserved regions were properly
aligned in all sequences and the number of gaps was kept
to a minimum. Phylogenetic analysis was performed on the
entire 650-base pair fragment, with omission of the primer
sequences used to amplify the Asp70 genes. Phylogenetic
distances based on DNA and protein sequences were calcu-
lated according to the algorithms of Jukes and Cantor [12]

and Dayhoff et al [3], respectively, using the PHYLIP phy-
logeny inference package version 3.5 [5]. The distance
matrix was analyzed using the Taxan program (University
of Maryland, Baltimore, MD, USA) with unweighted, aver-
age linkage clustering to generate phylogenetic dendro-
grams [13].

Nucleotide sequence accession numbers
Sequences from the clones reported have been submitted
to Genbank under accession numbers U49131 to U49150.

Results

Analysis of cloned hsp70 sequences

A total of 55 randomly selected HSP70 clones (H1 to H55)
from a PCR-generated clone library of a soil DNA prep-
aration were sequenced. None of the sequences analyzed
were identical to each other or to a published sequence. A
distance phylogenetic dendrogram of deduced partial amino
acid sequence of the clones was obtained using the Taxan
program. At a phylogenetic distance of 0.20, the clones
could be divided into 20 different groups (data not shown).
A representative clone of each group was then selected and
subjected to further phylogenetic analysis. Table 1 shows
the DNA and protein distance matrix of the representative
clones. Comparison of the sequence data from various rep-
resentative clones shows that phylogenetic distance based
on amino acid sequence ranges from 0.20 to 0.85 (Figure 1
and Table 1), and distance based on nucleic acid sequences
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from 0.30 to 0.95 (Table 1). A phylogenetic dendrogram
constructed on the basis of the protein distance matrix is
shown in Figure 1. At a phylogenetic distance of 0.80, the
clones could be divided into two major clusters (Clusters
1 and 2; Figure 1). It was also observed that representative
clones in Cluster 2 could be further divided into a number
of subclusters (Figure 1).

Amino acid sequence comparison and signature
sequences
Based on the global alignment of known HSP70 sequences,
a number of signature sequences have been identified that
provide clear distinctions between eukaryotic cytosolic
homologs and prokaryotic homologs and between Gram-
positive and Gram-negative bacteria [8,9]. In addition,
Falah and Gupta [4] also identified a number of signature
sequences that distinguish mitochondrial homologs and
eubacteria from chloroplast homologs and cyanobacteria,
as well as a four-amino acid insert specifically present in
B- and y-subdivisions of proteobacteria.

A comparison of partial amino acid sequences of rep-
resentative HSP70 clones and a number of known eubacter-
ial and eukaryotic homologs was carried out. Figure 2

152 o
E. coli
Synechocystis sp. QATKDAGKIAGIEVLRIINEPTAAELAYGLDKK—-—DﬂgT
H36 OATKDAGKIAGLNVLRI INEPTAABLAYGLDKK
H3 QATKDAGQIAGLEVERIINEPTAAALAYGLEKK.
St. griseus QATKEAGEIAGLNVLRIVNEPTAAALAYGLDKD

H25 QATKDAGRIAGLNDKRIINEPTAAALAYGLDKD--GGDRKIAVYDLGGGTFDVSVIETL

shows the multiple alignment of the partial amino acid
sequences. As observed, the sequences showed extensive
sequence similarity throughout the entire length (Figure 2).
The representative clones also showed the presence of a
number of signature sequences (Figure 2). Out of 20 clones
examined, four clones (H12, H54, H35 and H33) had signa-
tures typical of eukaryotic cytosolic HSP70 homologs
(Figure 2). These clones were found in Cluster 1 of the
phylogenetic dendrogram (Figure 1). The remaining 16
clones had signatures typical of eukaryotic organellar and
prokaryotic homologs (Figure 2) and constituted Cluster 2
of the dendrogram (Figure 1). In addition, clone H36 had
a number of signatures in common with chioroplast homo-
logs and cyanobacteria and five other clones (H25, H30,
H47, H13 and H5) had a four-amino acid insert character-
istic of B- and -y-subdivisions of proteobacteria (Figure 2).
Interestingly, clones H25, H30, H47, H13 and H5 formed
a subcluster within Cluster 2 (Figure 1). Apart from the 20
representative clones described here, the remaining 35
HSP70 clones of the 55 randomly selected clones had sig-
natures typical of eukaryotic organellar and prokaryotic
homologs (data not shown). Among these 35 clones, four
clones also had signatures typical of chloroplast homologs

261

LGGEDFDLRVINYLADEFKKESGIDVPKDPSG--MQR

Ps. cepacia QATKDAGRIAGLEVKRI INEPTAAALAFGLDKAE-KGDRKIAVYDLGGGTFDVSIIEL PELGGEDFDQRIIDYITGEFKKEQGVDLSKDVLA-~LQR
H30 OATKDAGRIAGLDVKRIINEPTAAALAYGMDKK--PGDRTIAVYDLGGGTFDISIIET: LGGADFDQILINYLVDEFKKESGVDLRQDPLA--LQR
H47 'LGGEDFDLTPMEYLTTEFKKDTGIDLHKDPLA--LOR
H24 LGGDNIDQKVMDWIVDEF IKDQGIDLSKDKMA--LQR
H28 LGGDNLDQRIIEWINAEFKKEDGIDLSKDRMA~-LQR
Hé LGGDDFDNVIIHWMLDEFKKESGIDLSKDKMA--LQR
H43 LGGKDIDOKIMNWLAAEFKKESGIDVLTDPLA~-RQR
HS3 - SADTVEVKSTNGDPBLGGDDFDQK I IHWIFEEFRKEQGVDLAKDEMV - - LQR
H51 —GDKVVEVVSTNGDQ&LGGDDIDNRLMDWLVAEFLKSSGLDISKDKMA——LQR
B. subtilis -GDGVFEVRSTAGDNRLGGDDFDQVIIDHLVSEFKKENGIDLSKDKMA--LOR
H14 LGGDDFDQRIIQWLIDEFKKETGVDLKNDRMA--LOR
H22 SFLGGEDFDQRIVDWMIETFKQETEIDLRPDRLG--LQR
H10 PHL.GGDDIDEALVGWIIDEFKKDQGIDLAQDKMA--LQR
Ca. crescentus LGGEDFDLRIVDYLADEFKKEQGVDLRKDKLA--LQR
H1 TRLGGEDFDMRVIDYLVNEFKRETGIDLRKDTIA--LQR
HS EHQFEVLATNGDESLGGEDFDKRIIDYLSKEFQKESGIDIRRDPLGMOMOR
H12 QATKDAGRIAGLNVLRIINEPTAAAIAYGLDKK-~-GEEKNILIFDLGGGTFDVSLLSI LGGEDFDNRLVEFFLAEFKKKHNHDLSTNERA~--KRR
H54 QATKDAGTISGLNVWGIINEPTAAAISYGLEKKKGRGETNVLILDLGGGTSDVSLLSI- THLGGEDFDORMMEHLGKESKSRYKKDLTTSPRA--LRR
H35 QATKDAGATVGLNVLRVLNEPTAAALAYGLDKK-VTGERNVLIFDLGGGTLDVSLLTI ~ - ~-DEGIFEVKATSGNEHLGGEDLDNRMADF LRKQFKNNTQLDISTNPRA--LRR
S. cerevisiae QATKDAGAISGLNVLRIINEPTAAAIAYGLGAGKSEKERHVLIFDLGGGTFDVSLLEI----AGGVYTVKSTSGNYHLGGQDFDTNLLEHFKAEFKKKTGLDISDDARA- ~LRR
H33 QATKDAGATAGLNVWRIINEPTSAALAYGLDKN-LTGEKNVLIFDLGGGTFDVSVLTI- - ~-DEGSLFEVRSTAGDIBLGGEDFDNRMVTYFTDEFKRKYKKDL-NSPRA--LRR
262¢ L [} . © 372
E. coli LKEAAEKAK-IELSSA-QQTDVN: *ADATGPKHMNIKVTRAKLESLVEDLVNRSIEPLKVALQDAGLSVSDIDDVILVGGQTRMPMVOKKVAEFF - GKEPRKDVNPDEAVA

Synechocystis sp. LIPEAAEKAK- IELSGV-SQTEINLE

WENATRDAKIDKSALDEIVLVGGSTRIPAVQEVVKK I L~GKDPNGGVNPDEVVA

H36 LPEASEKAK~ IELSGT-TEATINLE 'ADANGPKHLDVRLSRAKFDELTHELVERCAGPVKQSLADAKLGEKDIDEVILVGGATRMPSVQALVRRLMIGKEPNGTVNPDEAVA
H3 LREAAEKGK-KELSSS-QQTDINP ‘ADASGAKHLOMSITRAEFERLCDPLFERCREPVTKALKDAKLDPKEIDEVVLVGGSTRIPKVQELVREMF -GKEPHKGVNPDEAVA
St. griseus LREAAEKAX-TELSSS~-TETTINLE ‘*ASAEGPLHLDEKLTRSQFOQLTADLLDRCKTPFHNVIKDAGIQLSEIDHVVLVGGSTRMPAVAELVKELTGGQEANKGVNPDEVVA
H25 LKEAAEKAK-IELSSS-QQTEVNLEY I RADAAGPKHLNMKLTRAKLESLVEDLVQKTMEPCRIALKDAGLSMKDVSEVILVGGQTRMPLVQQAVKDLF -GKEPRKDVNPDEAVA
Ps. cepacia LKEAAEKAK-IELSSS-QQTEINLRYIMADASGPKHLNLKITRAKLEALVEDLVERTIEPCRIAIKDAGVKVSDIDDVILVGGOTRMPKVMEKVKEFF -GKDPRRDVNPDEAVA
H30 LKEAAEKAK-IELSSS-LOTDVNLYYITADASGPKHLNIKITRSKLESLVDDLIQRTIEPCKIALKDAGLKVSDI SDVILVGGQTRMPKVQEVVTEFF ~GKEPRKDVNPDEAVA
H47 LKEAAGKAK-IELSSA~QQTDVNL ANGPKHMNIKLTRAKLESLVESLIQRTIQPFQTALKDAGLSVSKIDDVILVGGPTRMPLVPKTVQELF-GKEPRKDVNPDEAVA
H24 LKEAAEKAK-MELSSV-METEIN: 'ADASGPKHLTMKLTRARFEQLVEDLLQKSVGPCKQALSDAGVKPEQIDEVVLVGGSTRIPRVQQOIVRDLF ~-KKEPHKGVNPDEAVA
H28 LKEAAEKAK-MELSTV-METDIN:. PDQSVPKHLOMKLTRPKLEQLIDDLLQKTVGPTKQALADAGLDPSKIDEVVLVGGSTRIPKVQQIVKELF -GKDRHKGVNPDEAVA
Hé LR-ATRKKK-RELSSGVISTEINQY DSSGPRHLALTLTRAKLESLCHNLVERTLAPSQKAMKDAGLSNSDIGEVILVGGMTRMPIVHPKVKEIF-GREPHKGVNPDEAVA
H43 LDEGAEKAK-IELSSA-LETEINIP] SGASGPQHLLIKMSRAKLEELCAEFVDRAMMITKRAMEASPFQIGDLNEVILVGGQTRMPALOKAVETYF -GGKPNMSVNPDEAVA

H53 VREAAEKAK-~HELSTS-METEINLRRIPOGASGPVHLVKKFTRAQLENLVSDLVQQOTLVPTQKALDDAGLKPADINEVILVGGMTRMPMVQAAVEKFV-GKKPDVSVNPDEAVA
H51 LREAAEKAK-TELSSV-QEAATH. PGGPLHLDLRLSRAKLEQMMAPLVERSMEPVKKAMODPPKSVKEIAEVVLVGGSTRIPLVKK SVTDFF-GREVHEGVNPDEAVA
B. subtilis LKDAAEKAK-KDLSGV-SSTQIS. AGEAGPLHLELTLTRAKFEELSSHLVERTMGPVRQALODAGLSASEIDKVILVGGSTRIPAVQEAIKKET -GKEAHKGVNPDEVVA
H14 LKEAARKRKGSDLSTT~-NETDIN *ADASGPKHLNVKLSRSKLEQLVMDMVDKTMEP SPKTLKDAGLTVEEIHEVVLVGGMTRMPIVPKAVKDFF -KKEPHKGVNPDEAVA
H22 | LKEAAFRAK-CELSTA-TESQLN!
H10 LK-EPSRAK-VELSSA-METEIQ

Ca. crescentus LR-EAEKAK-KELSST-AQYEVN

H13 PERCGRKEQKIELSSPVIQTDVN
HS5 LKEASEKPK-IELSSR-QQTEVN,
Hl2 LRAICERPK-RTLSSS-TQAYVE
H54 FRTACERAK-CTLSGS-PEQPSE

S. cerevisiae LRTAAERAK~RTLSSV- TQTTV&V
H33 FRTACERAK-RTLSSS-SEATI!

FISTLTRARFEELCMDFFKKTMAPAEQVLADAKMSKSDIAEVILVGGSTRIPKVQQOMLSDFFNGKQLNKSINPDEAVA
FNSSITPARFEDLCGDYFRSCIAPVEQVLRDSKMSKSNVHEVVLVGDSTRIPKVOELIKAFFNGKEPCKSINPDEAVA
\DFYTSITRAKFEELNMDLFKSCLEPVSKVLNDAKLDKSKVDEVVLVGGSTRIPKVRELLODYPHGRTLNTSINPDEAVA
$DFESSLTRARFEDLNAALFKSTLEPVEQVLKDAKISKSQIDEVVLVGGSTRIPKVOKLLSDFFDGKQLEKSINPDEAVA
FYTKISRARFEELCMDLFRSTMEPVEKALNDAKLDKSKIHDVVLVGGPTRIPKIQKLLODFFHGKELNKSINPDEAVA

Figure 2 Alignment of representative cloned HSP70 sequences with known eukaryotic and prokaryotic homolog sequences. The numbers at the top
refer to positions in the E. coli sequence. Signature sequences are presented as boldface letters on a shaded background. The symbols describe different
types of signature sequences. <, Signatures shared by chloroplast homologs and cyanobacteria; M, the four-amino acid insert shared by homologs of
B- and y-subdivisions of proteobacteria; -A, signatures shared by eukaryotic homologs and Gram-negative bacteria; ®, signatures shared by eukaryotic
cytosolic homologs; O, signatures shared by eukaryotic organellar and prokaryotic homologs. Dashes (-) indicated gaps or deletions in the sequence.
Partial amino acid sequences of known HSP70 homologs were obtained from Genbank (GB), Swiss-Prot (SP) and PIR (PI) databases. Species (accession
number): B. subtilis, Bacillus subtilis (SP P17820), Ca. crescentus, Caulobacter crescentus (SP P20442), E. coli, Escherichia coli (SP P04475), Ps.
cepacia, Pseudomonas cepacia (GB L36603), S. cerevisiae, Saccharomyces cerevisiae (P1 820149), St. griseus, Streptomyces griseus (GB D14499),

Synechocystis sp, Synechocystis sp (SP P22358).



and cyanobacteria and 20 clones had a four-amino acid
insert characteristic of 8- and +y-subdivisions of proteobac-
teria (data not shown). The presence of signature sequences
within the HSP70 clones suggests a relationship between
the clones and known homologs and provides information
regarding identity of the clones.

Discussion

Polymerase chain reaction-mediated amplification of 16S
rRNA genes obtained directly from DNA extracted from
the environment, followed by gene cloning, sequencing and
data comparison has provided a way of assessing the com-
position of a microbial community [1,7,14,16]. We have
employed a similar approach to determine the genetic
diversity of a soil community by analyzing sequences of a
highly conserved gene, hsp70, derived by PCR amplifi-
cation. None of the sequences of 55 randomly selected
HSP70 clones were identical to each other or to a published
sequence, suggesting the presence of a variety of novel
HSP70 types within the soil community. The observed vari-
ation cannot be accounted for by errors in PCR in view of
the location of sequence changes and the maximum error
rate reported for Tag polymerase (1 in 400 per 30 amplifi-
cation cycles) [15].

The presence of a distribution of signature sequences in
the HSP70 clones (Figure 2) provides information about the
identity of novel HSP70 types. On a broad basis, the 55
HSP70 clones could be divided into two major groups, one
comprising eukaryotic cytosolic homologs and the other
eukaryotic organellar and prokaryotic homologs, constitut-
ing 7% (four clones) and 93% (51 clones) of the clones,
respectively. Of the latter group 49% (25 clones) of the
clones had signatures distinctive of the 8- and y-proteobac-
teria group and 10% (five clones) had signatures character-
istic of the cyanobacteria and chloroplast group suggesting
a close relationship of these clones to the groups men-
tioned. However, although detailed phylogenetic analysis
of the clones and known homologs was carried out, the
limitation in length of the partial amino acid sequences did
not allow for precise phylogenetic assignment.

Using a strategy involving PCR amplification of 16S
rRNA genes, Liesack and Stackebrandt [14] and Stacke-
brandt et al [16], demonstrated the existence of a variety
of novel groups of the domain Bacteria within a subtropical
terrestrial soil sample. In a similar manner, we demon-
strated the existence of a number of novel HSP70 types
within a soil community. Taken together, these results
further support the notion that culturable microorganisms
constitute only a small proportion of a microbial com-
munity in a terrestrial environment. A corollary of this
finding is that such communities possess much unrecog-
nised microbial metabolic diversity that presents an opport-
unity in terms of industrial and pharmaceutical [11] appli-
cations and which can be made accessible by using the
molecular techniques outlined here.

In summary, through PCR amplification of hsp70 genes
from DNA extracted from a soil sample, we demonstrate
the existence of a large proportion of uncharacterized gen-
etic diversity in a soil community. Efforts are now
underway to use the PCR-amplified Asp70 genes as probes
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for the screening of libraries constructed from extracted soil
DNA. The isolation of full length clones will enable a more
precise phylogenetic assignment of novel HSP70 types.
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